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Abstract 

ROLE OF ZBP-89 AND NFKB (P65) IN MMP-1 GENE REGULATION 

Nelly Khaselev 

MS in Biomedical Sciences, 2016 
Department of Biomedical Sciences 

Philadelphia College of Osteopathic Medicine, Philadelphia, PA 

Ruth C. Borghaei, Thesis Advisor 

Matrix metalloproteinases (MMPs) are a family of zinc-dependent 
endopeptidases with the unique ability to breakdown virtually the entire 
extracellular matrix (ECM). Through ECM remodeling, MMPs play an important role 
in normal development, tissue repair, angiogenesis, and apoptosis. Studies have 
shown that unregulated MMP expression plays a role in many cancers and chronic 
inflammatory diseases. Previous research has used gene sequence analysis ofthe 
MMP-1 promoter to identify a putative ZBP-89 binding site at -1969 bp. Chromatin 
immuneprecipitation experiments showed that both ZBP-89 and Re!A (p65) could 
bind to this binding site. In this thesis research, transfection experiments were used 
to explore the role of ZBP-89 and p65 in regulating MMP-1 gene expression. Two 
versions of a MMP-1 plasmid were used: a "Long MMP-1 plasmid" with a longer 
MMP-1 promoter (2.2 kb) that contains the distal putative binding site and a "Short 
MMP-1 plasmid with a shorter promoter (1.1 kb) that does not. Results showed that 
ZBP-89 alone can increase long MMP-1 plasmid expression in COS-1 cells and ZBP-
89 and p65 synergistically increase long MMP-1 plasmid expression in a dose
dependent manner. This suggests that ZBP-89 may cooperate with NFkB-p65 in 
MMP-1 gene regulation. ZBP-89 and p65 did not increase short MMP-1 plasmid 
expression in COS-1 cells or A549 cells. These results support our hypothesis that 
ZBP-89 and p65 work directly through the putative binding site at -1969 bp. This 
research further expands our understanding of MMP-1 gene regulation and can aid 
the development of MMP targeted therapy. 
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1. Introduction 

1.1 MMP Background 

Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases 

involved in the breakdown of extracellular material. The first member of the MMP family 

was discovered in 1962 by Dr. Jerome Gross and Dr. Charles Lapiere, having 

collagenolytic activity in amphibian tissue, since then at least 24 other MMPs have been 

discovered (Gross & Lapiere, 1962; Y an et al., 2007). This family of proteins garnered 

further attention as the complexity of its role in both physiological and pathological 

processes became increasingly evident. MMPs are known to be involved in wound 

healing, tissue remodeling, angiogenesis, apoptosis and various other physiological 

processes. Interestingly, MMPs have been shown to have both a positive and a negative 

role in pathologies such as cancer and chronic inflammatory disorders (reviewed in 

Malmud, 2006). It is therefore important to further our research of MMP regulation to 

better understand MMPs' role in physiological and pathological processes. 

1.2 The Structure-Function Relationship 

The MMP family has the capacity to break down most, if not all, of the 

macromolecules of the extracellular matrix (ECM), a process essential for normal organ 

development and growth. This family of proteins includes collagenases, matrilysin, 

metalloelastase, gelatinases, enamelysin, stromelysins, and others. These endopeptidases 

share a number of similar structural features, yet they have distinct but overlapping 
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substrate specificities. Moreover, many may serve other functions beyond matrix 

breakdown (Verma et al., 2007). 

MMPs can be either secreted or membrane-bound as cell surface enzymes. They 

mainly consist of five distinct domains: N-terminal pre-domain, pro-domain, catalytic 

domain, a hinge region, and C-terminal hemopexin-like domain (HPX). Membrane-type 

MMPs also contain a transmembrane domain, and a short cytoplasmic signaling tail 

(Stemlicht & Werb, 2015). A schematic of the basic MMP family protein structure is 

shown below (Figure 1 ), (Kandasamy, et al., 2009). 

catalytic Region HI'X 

Figure 1: Common MMP Protein Structure, (Modified from Kandasamy, et al., 2009) 

The pro-domain contains a conserved Cys residue that forms a complex with the 

zinc ion in the active site to inhibit catalysis. All MMPs are initially synthesized as an 

inactive zymogen form. Disrupting or removing the Cys-Zinc molecular complex 

activates the zymogen MMP, and catalysis can proceed (Van Wart et al., 1990). 

Within the catalytic domain, three histamine residues encoded by the conserved 

sequencing motif HExxHxxGxxH bind the Zinc ion that facilitates catalytic activity 

(Verma et al., 2007). Interestingly, Cha et al. have shown that replacing the Zinc ion of 

MMP-3 with other +2 cations maintained the catalytic activity, but subsequent geometric 
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changes affected the substrate specificity (1998), thus characterizing the role of the Zinc 

ion in MMPs in both substrate specificity and proteolysis. 

Most MMPs contain a C-terminal hemopexin domain (HPX) that supports 

protein-protein interaction, substrate specificity, and protein activation or inhibition. For 

example, Dr. Murphy and colleagues showed that removal of the collagenase HPX 

altered MMP-1 's interaction with endogenous tissue inhibitor (TIMPl) thus indirectly 

increasing MMP-1 protease activity (1991). Interestingly, Dr. Remade and colleagues, 

identified inhibitors that target the HPX domain and found they reduced tumor growth, 

providing preclinical evidence of a new therapeutic target- the HPX domain (2012). 

Understanding the structural similarities and differences ofMMPs can provide further 

insight into the complex and sometimes contradictory roles MMPs play in both 

physiological and pathological processes. 

1.3 MMP breakdown of extracellular matrix and other physiological functions. 

The extracellular matrix (ECM) provides structural support for organs and tissues 

as well as creates the microenvironment that influences many important biological 

processes. The ECM provides anchorage to cells, it can aid or hinder cell migration, and 

it sequesters various cytokines and growth factors that, when released, modulate cell 

behavior and growth. Lastly, physical properties of the ECM such as stiffness and 

biomechanical force can influence cell behaviors such as cell differentiation (Lu et al., 

2011). 
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Figure 2: Extracellular Matrix function leads to changes in cell behavior (Modified from Lu et at., 2011) 

MMPs are by far most commonly known as important extracellular matrix 

regulators. MMPs through ECM remodeling help regulate cell differentiation, 

angiogenesis, bone remodeling, and wound repair. Furthermore, the breakdown ofECM-

specific substrates can produce bioactive cleavage fragments, providing further cell 

communication. In contrast, abnormal ECM regulation leads to uncontrolled cell 

proliferation, differentiation, and failure of apoptosis, leading to various pathologies (Lu 

etal., 2011). 

A study that investigated the role of collagenase (MMP-1) in wound healing used 

in situ hybridization to localize the expression of MMP-1 in samples of pyogenic 

granuloma, a common skin growth. The study found an increased expression ofMMP-1 

in migrating keratinocytes near the edge of all lesions, but not in tissue samples without 
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ulcerations (Saarialho-Kere et al., 1992). MMP-1 specifically degrades collagens types I 

and III, which aids keratinocyte migration at sites of focal adhesion attachment to the 

dermal substratum (Martin, 1997). 

In a more recent study looking at wound healing in diabetic patients with foot 

ulcers, results indicated that high levels ofMMP-1 are vital for proper wound healing. An 

excess of MMP-8 and -9, however, are harmful and can delay wound healing, showing 

the complexity of MMPs role and importance of protein balance. Wound fluid from 

neuropathic diabetic foot ulcer patients was analyzed for MMP-1, -8, -9 and TIMP-1 (an 

endogenous tissue inhibitor of MMPs), during a 12-week period. Good healers, defined 

by a decrease of wound surface by at least 82 percent by four weeks, showed a decreased 

level of MMP-8 and -9 by inflammatory cells and a significant increase in MMP-1 by 

week two. Poor healers, defined by a decrease of wound surface less than 82 percent by 

four weeks, showed higher levels of MMP-8 and -9 and an initial level of MMP-1 similar 

to that of good healers but no significant increase as time progressed. Better 

understanding of the regulation of MMPs can help direct treatment. Further research for 

topical treatments aimed at MMPs can have significant clinical implications in diabetic 

patients (Muller et al., 2007). 

MMP-1 is also important in angiogenesis, as shown in a study of the migration of 

microvascular endothelial cells (EC) - an early stage of angiogenesis. In this study, 

investigators overexpressed angiogenic fibroblast growth factor-! (FGF-1) and MMP-1 

in cultured postcapillary venular endothelial cells and found that chimeric FGF-1 

transfected cells migrated two times faster in a pure collagen I matrix as compared to 

vector control transfected cells. A selective MMP-1 inhibitor abolished this increase in 
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migration. These results showed the important function of MMP-1 and how crucial 

proper regulatory factors are in mediating MMP-1 activity (Patridge et al., 2000). 

Although most MMPs are secreted and function primarily as external proteins, 

these same proteins can have an intracellular function. One study found that intracellular 

MMP-1 levels were highest during mitosis in glial Muller cells. Using 

immunohistochemical staining, investigators found a clear association of MMP-1 with 

mitochondria and cell nuclei in both glial and nonglial cells upon induction of apoptosis. 

RNA interference and an MMP inhibitor showed that inhibition of MMP-1 speeds up the 

degradation of lamin A, activates caspases, and increases DNA fragmentation as 

compared to uninhibited cells. This suggests that MMP-1 has an important role in cell 

cycle regulation and can help cells resist apoptosis (Limb et al., 2005). Likewise, this 

provides one explanation to the common association of MMP-1 with cancer cell survival 

and metastasis. 

For decades now, MMPs have been investigated for their important role as 

extracellular matrix regulators. Their important physiological role in cell-cell and cell

ECM communication is evident in normal development and maintenance of human tissue 

and organs. Interstitial collagenase, MMP-1, has been implicated in cell migration, 

wound healing, angiogenesis, and cell survival as described above. 

1.4 MMP's role in cancer biology. 

MMPs play a complex and often contradictory role in cancer. MMPs can be both 

positive and negative prognosis predictors depending on the cancer and cell type. MMPs 
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role in cancer can be cancer-stage specific, tissue specific, or cell specific. Through both 

extracellular and intracellular functions, the MMP family can regulate cell survival, 

differentiation, proliferation, and migration, affecting virtually all aspects of cancer 

progression. MMP-1 overexpression has been studied in breast cancer (Xuan et al., 

2014), colon cancer (Lu ZH et al., 2011), and lung cancer (Schutz et al., 2015), as well as 

several others. Further understanding of MMP expression can provide novel insight to its 

role in tumorigenesis. 

The simplest explanation for MMP-1 's involvement in cancer is the role it plays 

in digesting ECM macromolecules and thus paving the way for tumor cell migration. 

Indeed, the cause of death in many cancers is due to metastasis of tumor cells that invade 

the peripheral tissue, blood, and lymphatic vessels, thus entering circulation 

(Kessenbrock et al., 2015). In one study, MMP-1 expression was detected via 

immunohistochemical staining of four different tissues: 1) non-specific invasive ductal 

carcinoma (IDC) of the breast, 2) cancer-adjacent normal breast tissue, 3) lymph node 

metastases of non-specific IDC of the breast, and 4) normal lymph node tissue. Analysis 

of the results showed that positive MMP-1 expression in non-specific IDC (54.5%) was 

significantly higher than in normal tissue adjacent to cancer (20.6%). Likewise, the 

positive MMP-1 expression was significantly higher in IDC metastatic lymph node tissue 

(66.7%) than in normal lymph node tissue (0%) (Xuan et al., 2014). This is one example 

of many that show an association between MMP-1 and tumor metastases. 

MMP-1 seems to have a stage-specific significance in colon carcinoma. The 

expression pattern of MMP-1 was studied using immunohistochemistry on the tissue of 

620 colon carcinoma patients. Data analysis revealed that positive MMP-1 expression 
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was significantly higher in cancer tissue than in normal colon tissue. Dividing patients 

by cancer stage revealed that positive MMP expression is also significantly higher in 

patients with Stage I and II colon cancer when compared to patients with Stage III and IV 

colon cancer. In Stage I and II, high MMP-1 expression was associated with poor 

prognosis; while in stage III and IV, high MMP-1 expression was associated with 

improved prognosis. This data presents MMP-1 as an independent prognostic factor in 

colon carcinoma with differing prognostic implications depending on the stage of the 

cancer (Lu ZH et al., 2011). 

MMP-1 and MMP-9 levels have been implicated in lung cancer prognosis as well. 

Gouyer et a!. examined nonsmall cell lung carcinoma (NSCLC) in lung cancer patients 

that underwent complete resection. Their study found that high MMP-1 expression 

significantly correlated with tumor-lymph node metastasis and lower survival rates 

(Gouyer et al., 2005; Schutz et a!., 2015). MMP-1 levels increased with tumor stage 

progression, with a significant difference between Stage IA and Stage liB disease. 

Interestingly, where MMP-1 seems to be more associated with metastasis progression, 

MMP-9 seems to be involved in tumor cell growth. MMP-9 expression correlated with 

an increase in T classification, which measures tumor size (Gouyer et al., 2005). Both 

MMPs were overexpressed in tumor cells but their impact on cancerous tumors differs. 

The human proteolytic system that breaks down tissue is remarkable, involving over 

500 genes encoding for proteases or protease-like proteins. Nevertheless, among all the 

enzymes potentially associated with tumor growth and tumor metastases, the MMP 

family draws extra attention as promising targets of cancer therapeutics on the basis of 

being commonly overexpressed in malignant cells, strongly associated with poor 
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prognosis and uniquely able to degrade virtually the entire extracellular matrix (Folgueras 

et al., 2004). Preclinical studies in various tumor models showed great efficacy of MMP 

inhibitors, and clinical trials began quickly. The results of these trials were 

disappointing, largely due to drug-related side effects, toxicity and lack of specificity. 

Although MMPs physiological role in tissue remodeling and digestion of ECM is a 

compelling argument for their role in cancer, we now know that MMPs play a much more 

complex role than previously expected. Researchers began to re-investigate MMP 

biology- its regulation and function in pathology. 

1.5 The role ofMMPs in Chronic Inflammatory Diseases 

Inflammation is the body's natural response against harmful stimuli such as 

toxins, infections, and injury. Upon stimulation, cells release inflammatory cytokines that 

can activate a protein-kinase signaling pathway. This results in increased expression of 

various proteins that help eliminate the cause of injury, and begin the process of tissue 

repair. Inflammatory cytokines, such as IL-l and TNF a have been shown to increase 

MMP gene expression (reviewed in Malmud, 2006). Prolonged inflammation causes 

cartilage, bone, and tissue damage - the hallmark symptoms of many chronic 

inflammatory diseases such as periodontitis and rheumatoid arthritis. Increased levels of 

MMPs contribute greatly to these chronic inflammatory diseases. 

One of the first connections between pathology and MMPs was made in 

Rheumatoid arthritis (RA) (reviewed in Brinckerhoff, 2002). One of the main 

components of articular cartilage is type II collagen, while type I collagen is the major 
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type found in tendon and bone. Elevated levels of inflammatory cytokines, IL-l p and 

TNFa in synovial fluid stimulate the expression of collagenases, MMP-1 and MMP-13. 

These collagenases degrade collagen type I and II causing much of the damage in RA 

(Brinckerhoff, 2002). With the discovery of MMP's important role in synovial joint 

damage, researchers quickly began to investigate MMP inhibitors as a therapeutic 

approach for RA. Adalimurnab, a TNFa monoclonal antibody, binds to TNFa thus 

preventing it from stimulating inflammatory signaling pathways. In a clinical trial, 

Adalimumab was found to reduce MMP-1 expression in patients with RA receiving 

concomitant methotrexate. Adalimurnab successfully reduces many symptoms of RA 

(Malmud, 2006). 

One of the better understood inflammatory diseases, as it pertains to MMPs, is 

periodontitis. This chronic inflammatory disease affects the gums and teeth, and results 

from opportunistic bacterial infection. Bacterial antigens, such as lipopolysaccharides 

(LPS), stimulate cells such as fibroblasts, macrophages, neutrophils, and even pulp tissue 

itself (odontoblasts and odonotclasts) to secrete cytokines and subsequently increase 

MMP expression (Jain, 2015). Several studies have shown elevated levels ofMMP-1, as 

well as other MMPs, in periodontitis patients, which results in substantial tissue 

destruction and even tooth loss (Popat et al., 2014; Shindo et al., 2014). Treatment with 

antibiotics, tetracycline or doxycycline, which inhibits MMP expression and activity, can 

prevent and treat periodontitis. Periostat is a tetracycline that chelates the zinc ion, thus 

effectively inhibiting MMP activity. It is the only MMPI currently approved by the FDA 

for medical use and prescription (Brinckerhoff, 2002; www.accessdata.fda.gov). 
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1.6 MMP-1 Gene regulation. 

MMP-1 is ubiquitously expressed in low levels in most healthy tissues and is 

involved in a variety of physiological processes, such as tissue remodeling. Gene 

expression is complex and tightly controlled to maintain appropriate physiological levels. 

However, when the regulation pathway is hijacked in neoplastic cells or altered by 

immune system dysfunction, gene expression is drastically increased, promoting 

progression of the pathology. In order to fully understand pathologies such as cancer and 

chronic inflammatory diseases, and how we cau therapeutically intervene, it is critical to 

understand which transcriptional factors and which signaling pathways lead to increased 

gene expressiOn. 

MMP-1 expression can be induced by oxidative stress, cytokines, growth factors 

and other environmental signals, and multiple signaling pathways lead to transcription 

factors binding the MMP-1 promoter. Figure 3 below represents the MMP-1 promoter 

with important transcription factor binding sites. 

-1%:9 -1607 -186 .$9 -73 -32 
-2878 

@)(;;) 9@> c: !NFkB i ei.NFkl' # ® hAT• I 
MMP•l f'ro~otcr 

Figure 3: Schematic diagram of the MMP-1 gene promoter. Transcriptions factor binding sites for AP-1, ETS, 
NF-kB and ZBP-89 are shown. Note that the distal NF-kB binding site is not within the MMP plasmid 
constructs used in these experiments. (Figure based on information from Okeane et al2010, Spinale et al. 
2007, Cartharius et al. 2005, McCreechy et al 2005.) 

Activator Protein-1 (AP-1 ), a heterodimer of Fos and Jun family proteins, has a 

common binding site at -70 kb in many MMP genes. AP-I can be activated through the 

mitogen-activated protein kinase (MAPK) pathway (Figure 4). Cytokines, osmotic 

stress, apoptotic signals, and growth factors begin a signaling cascade that leads to the 
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stress, apoptotic signals, and growth factors begin a signaling cascade that leads to the 

phosphorylation and activation of c-Jun N-terminal kinases (JNKs) and extracellular 

signal-regulated kinases (ERKs), two members of the MAPK family. As a result, JNKs 

and ERKs translocate into the nucleus where they can phosphorylate and activate c-Jun 

proteins, which can dimerize with c-Fos to form an active AP-1 molecule capable of 

stimulating MMP-1 gene transcription (Benbow et. a!., 1997; Kida et. a!., 2005, Hong et. 

a!., 2015). 

MMP-1 has a pivotal role in cancer progression and metastasis, and is commonly 

found to be overexpressed in many cancers (as discussed previously). It is not surprising 

that important MMP-1 regulators, such as AP-1 are also overexpressed in cancers. For 

example, Dr. Belguise and colleagues found that breast cancer patients with more 

invasive prognosis have higher levels of Fra-1 expression. Fra-1 is a transcription factor 

in the FOS family. Belguise overexpressed as well as silenced the Fra-1 gene in MCF7 

ER+ cells, a breast adenocarcinoma estrogen receptor positive cell line. Belguise found 

that overexpression of Fra-1 increased expression of wildtype MMP-1 but not MMP-1 

with a mutated AP-1 site. Also, silencing of Fra-1 inhibited cell proliferation and 

drastically decreased DNA content ( 4.5 fold) as compared to control cell line (Belguise 

et. al., 2004). 
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Figure 4: Schematic of AP-1 Activation Pathway (image modified from Buddhini Samarasinghe 2014 
based on information from Benbow et. al., 1997; Kida et. al., 2005, Hong et. al., 2015). 
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Interestingly, the MMP-1 promoter has a common polymorphism that creates a 

functional transcription factor binding site. This polymorphism at -1607bp, is commonly 

found in many cancer patients, as well as patients with chronic inflammatory conditions. 

Due to the insertion of a guanine nucleotide, an Ets binding site is created. Studies 

looking at hundreds of patients with ovarian, breast, melanoma, endometrial carcinoma, 

and glioblastomas all found similar results - the cancer patient population had an 

increased prevalence of the 2G/2G genotype compared with healthy controls. Patients 

with the 2G polymorphism had tumors with significantly increased MMP-1 expression, 

which correlated with more aggressive cancer and metastasis (McCready et al., 2005; 

Nishioka et al., 2000; Kanamori et al., 1999). Remarkably, this same polymorphism has 

been shown to increase periodontitis and arthritis susceptibility (Li, Feng et al., 2015; 

Lepetsos et al., 2014; Li, Peng et al., 2015). 

1.7 Transcription Factors oflnterest: NF-kB and ZBP-89 

This research project focuses on two transcription factors: Nuclear factor -

kappaB (NFkB) and Zinc-Binding Protein-89 (ZBP-89). NF-kB is a family of proteins 

that function as important transcription factors. The dimeric transcription factor binds to 

DNA and regulates the expression of many genes involved in immunity, inflammation 

and cell cycle regulation. The NF-kB family of proteins is composed of two classes: class 

I -the 'NF-kB' proteins and class II - the 'Rel' proteins. The Rei proteins include e-Re!, 

Re!B, and Re!A (p65); while the NF-kB proteins include pl05 and plOO.Class I proteins, 

p 105 and pI 00, cannot activate transcription on their own, unless bound with a class II-
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Rei protein. Moreover, p105 and p100 must become shorter active proteins either by 

limited proteolysis or arrested translation; p 105 and p 1 00 become p50 and p52, 

respectively. This allows for a diverse combination of hetero and homodimers, which 

increases specificity, and range of gene targets (Reviewed in Gilmore, 2006). 

NF·I<B 
dlmera 

IRoiA p50 0 

• C·Rel • p52 0 

• ReiB cl cl ReiB • 

0 p52 (0 C. cl •••• c-Rerl 

0 p50(D (D • • • RoiA. 

Figure 5: NF-kB possible dimers provide diverse gene targets (modified from Hoffmann, 2006) 

Various signals such as oxidative stress, cytokines, viral and bacterial components 

can stimulate a cascade of signaling events leading to the activation of the NF -kB family 

of proteins. The predominant transcription factor dimer in most cells consists of RelA 

(p65) and p50 and is activated by the classical NF-kB signaling pathway, as depicted in 

Figure 6. In normal physiological states, IkB proteins in the cytoplasm bind to and 

inhibit NFkB, keeping it inactive until the cell is stimulated. Once the cell is stimulated 

by proinflanunatory cytokines, LPS, or growth factors, IKK proteins (IkB kinases) are 

activated. As a result, active IKK phosphorylates the IkB molecule attached to NF -kB. 

Phosphorylated IkB molecule is ubiquitinated and targeted for proteasomal degradation, 

thus releasing the NF-kB transcription factor. Active NF-kB is translocated into the 

nucleus where it can bind to DNA and increase or decrease gene transcription (Vincenti 

et. al. 2002; Kida et. al., 2005). 
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Whether NF-kB acts as an activator or repressor of gene expression depends on 

various factors: the dimer composition, the sigualing pathway, the cofactors, the target 

gene and the cell type. For example, NF-kB helps regulate fibrosis and extracellular 

matrix remodeling by decreasing collagen expression and increasing MMP gene 

expression. Rippe et al. conducted transfection experiments with NF-kB p50, RelA 

(p65), and c-Rel plasmids in collagen producing cell lines. Dose-response curves showed 

that p65 inhibited alpha! collagen gene expression the most. Nuclear run-on assay 

showed that p65 also decreased endogenous alpha! collagen gene expression (1999). 

t\11-··KHiwU 
\li ili,H:I\\;L' 

'~!;~:~.· hy ir:Jw \,J 
..__IKK ;!(Iii" 

p1u_:o~;pli.Jh:S 

NF·KB In I Kiln 
(Inactive) 

f 1 l'1o·~pllo: y:il\Cd 
l"'-/Wi 1'"• [i~:~qr:~·:kd 

ONF-KB 
--~ ~~~---1,.~ (active) 

a NUCLEUS 

NF-KB 
(active) 

~DNA 
Transcription oHI•IMP -1 

Figure 6: NF-kB CanonicalJClassical Activation pathway (modified from Buddhini Samarasinghe 
2014). In a stimulated cell, phosphorylation oflkB by IKK renders NF-kB free to translocate into the 
nucleus and bind to DNA. 

Page 23 of 58 



www.manaraa.com

N. Khaselev 

Protein-protein interactions are an important factor that affects NF -kB 

transcriptional activity. For example, NF-kB has been found to have both negative and 

positive effects on activity of p53, a tumor suppressor protein. Wu and Lozano 

demonstrate cytokine induced NF-kB binding to the p53 promoter thus increasing gene 

expression and active p53 protein (1994). Jeong et al. studied the regulation of p53 in 

adult T-cellleukemia (ATL), and HTLV-1 transformed cells. This study found a new 

interaction between NF-kB and p53 that inhibited NFkB expression and activity. The 

human T -cell lymphotrophic virus type-I (HTVL-1 ), expresses a transactivator of viral 

protein, Tax. This study demonstrates that Tax induced NF-kB activation leads to p65-

p53 protein-protein interaction and p53 inhibition. In addition, posttranslational 

modification of p53, such as phosphorylation, affects its activity and this study 

demonstrated that phosphorylation of p53 is essential for the p65-p53 complex formation 

in tumor cells (2004 ). 

One of the first fundamental studies looking at cytokine induced MMP-1 

expression found NF-kB to be an important gene regulator. This study looked at IL-l 

induced MMP-1 expression. IL-l is an important pro-inflammatory cytokine that triggers 

various catabolic reactions - such as the breakdown of extra cellular matrix. Vincenti et 

al., found that NF-kB activates gene expression in rabbit synovial fibroblasts through a 

distal binding site on the MMP-1 promoter. This study helped our understanding of 

MMP-1 gene regulation and its implication in inflammatory disease, such as rheumatoid 

arthritis (Vincenti et al., 1998). 

A more recent study investigated the role ofNF-kB induced expression ofMMP-

1 in tuberculosis (TB). TB is an infectious disease caused by mycobacteria and is 
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commonly characterized by scarring and lung tissue damage as a result of increased 

MMP-1 expression. In this study, human lung fibroblast cells were stimulated with 

conditioned media from Mtb-infected monocytes (CoMTb). Expression experiments and 

immunohistochemistry showed that CoMTb increased MMP-1 protein synthesis. 

Deleting the kB site (NF-kB binding site at -2,878kb) from the MMP-1 promoter 

abolished this induced response from CoMTb (O'kane et al., 2010). 

Zinc-Binding Protein-89 (ZBP-89) is a zinc finger transcription factor, which 

binds to GC-rich DNA, and often works in conjunction with other transcription factors to 

either increase or decrease gene expression. ZBP-89 is known to regulate many genes 

involved in cell growth, differentiation, and apoptosis and has a complex role in 

pathologies such as cancer (Yan et al., 2014; Cai et al., 2012). ZBP-89 can also have an 

epigenetic function, as it contributes to the regulation of histone and DNA modification -

acetylation and methylation (Ye et al., 2013; 2015). 

Studies have shown that ZBP-89 can act either as a repressor or activator of gene 

expression, although the mechanism for this bi-functional activity is unknown. ZBP-89 

is a gene activator of p21, T cell a- and P- receptor, tyrosine kinase (lck), and type 1 

collagen but a gene repressor of gastrin, p16, SOXI8, and vimentin as well as others 

(reviewed in Zhang et al. 2010). It is thought that ZBP-89's bi-functional activity is 

influenced by the gene sequence itself and protein-protein interactions (Zhang et al, 

2010). On genes that it suppresses, ZBP-89 often competes for binding with other 

transcription factors, especially members of the Sp I family (Law, et al. 1998; Keates, et 
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al. 2001). The competition between transcription factors Spl and ZBP-89 allows for 

balanced gene expression. 

Although not much is known about the regulation of ZBP-89, studies have found 

that post-translation modification can influence ZBP-89's activity. For example, Bai et. 

al, has shown that A TM kinase phosphorylates ZBP-89 which weakens its ability to 

increase p21 expression (2007). In addition, Borghaei et al. have shown that 

inflammatory cytokine IL-l~ inhibits ZBP-89 gene expression, suggesting that ZBP-89 is 

regulated during inflammation (2009). 

As a transcription factor, ZBP-89 has been shown to act directly and indirectly. 

For example, ZBP-89 has been shown to bind directly to the Bak promoter and increase 

expression in hepatocellular carcinoma cells and significantly increase tumor apoptosis 

(To et al., 2011 ). Interestingly, Ye el a!. found that ZBP-89 can also enhance Bak 

expression by suppressing epigenetic enzymes, HDAC3 and DNMTl. Ye et al. used 

xenograft mouse tumor model to show that ZBP-89 repression of HDAC3 maintained 

histone acetylation of the Bak gene in HCC cells and increased Bak expression (Ye, 

2013). Although studies have shown that ZBP-89 can enhance gene expression through 

histone modification, other studies have shown that ZBP-89 can repress gene expression 

through histone modification as well. For instance, Feng et al. have demonstrated that 

ZBP-89 recruits HDAC3 and inhibits expression ofpl6, an inhibitor of cyclin dependent 

kinases such as CDK4 and CDK6 (2009). 

ZBP-89 interactions with other transcription factors, including p300, HDAC, Spl, 

YYl, STAT3, p53 and NF-kB can determine its effects on gene expression (Bai et 2000, 

Zhang, et al 2003; Boopathi, et al 2004, Wu et a!., 2004; Wu et al. 2009, Woo et al. 
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2011, Bai, et a/2001; Borghaei, et a/2016). For example, ZBP-89 has been shown to 

cooperate with STAT3 to increase vimentin gene expression (Wu et al. 2004). However, 

a few years later it was reported that vimentin gene expression is inhibited instead of 

enhanced when ZBP-89 cooperated with HDAC (Wu et al. 2009). 

The most well studied protein interaction is between ZBP-89 and tumor 

suppressor protein, p53. Bai et a!. showed ZBP-89 can induce apoptosis in human 

gastrointestinal cell lines through a p53 mediated pathway. This study found that ZBP-89 

physically bound to p53, stabilizing it and preventing it from leaving the cell nucleus, 

which allowed for increased p53 activity (Bai et al., 2001). Later studies further 

demonstrated the ZBP-89 -p53 interaction in hepatocellular carcinoma cells. Chen et al. 

found that ZBP-89 co-localized with p53 in the nucleus in 67% of all HCC patients 

positive for p53. This study also found that patients who had ZBP-89/p53 co-localized 

in the nucleus where more responsive to treatment (Chen et al, 2006). This is consistent 

with Dr. Zang's study that found patients with increased expression of ZBP-89 in 

cancerous HCC cells as compared to adjacent non-cancerous liver cells showed better 

survival (2012). 

Recent studies have found an interesting relationship between ZBP-89 and NF

kB. Both transcription factors can act as activators or repressors and have been shown to 

interact with many of the same proteins, (i.e. p53). Both have also been implicated in 

MMP gene regulation. For example, ZBP-89 binds to a polymorphic site in the MMP-3 

promoter with NF-kB (Borghaei et al., 2009). Recent evidence is more consistent with 

cooperation rather than competition of this binding site. This study also showed that 

ZBP-89 can physically interact with pSO and p65 (Borghaei et al. 2016). Ye et al., 
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suggests that ZBP-89 may have a role in regulating NF-kB activity. This study indicates 

that ZBP-89 can increase levels of phosphorylated IkB, thus increasing active NF-kB 

levels (20 15). These recent developments prompt further curiosity of the relationship 

between NF-kB and ZBP-89. 

I. 8 Preliminary data: 

After sequence analysis of the human MMP-1 promoter found two possible ZBP-

89 binding sites, this lab began to investigate ZBP-89's role in MMP-1 gene expression. 

Preliminary experiments looked at ZBP-89's effect on basal and cytokine induced 

expression of MMP-1 in MG-63 osteosarcoma cell lines. To do this, a ZBP-89 

knockdown cell line was created using RNA interference. Using RT-PCR, ZBP-89 gene 

knock-down was shown to decrease cytokine induced MMP-1 gene expression (Figure 

7). Furthermore, a chromatin immunoprecipitation (ChiP) assay showed increased ZBP-

89 and NF-kB binding to the endogenous MMP-1 promoter in the negative control line 

treated with TNFa, as compared to the untreated cells (Figure 8). 
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Figure 7: Effect of ZBP-89 knockdown on cytokine-induced expression of MMP-1 mRNA in MG-NC and 
MG-ZBP-KD cell line. Total RNA was harvested from ZBP-89 knock-down (MG-ZBP-KD) and negative 
control cells (MG-NC) left untreated or treated with IL-lb for the indicated times. MMP-1 mRNA levels 
were quantified by real-time PCR, normalized to levels of GAPDH mRNA, and expressed relative to levels 
in the untreated cells. Similar results were found when treated with TN Fa (from Borghaei et a/2016). 
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Figure 8: MG-NC and MG-ZBP-89 cells were left untreated (control) or treated with TNFa for 6 hours. ChiP assays 
were completed using the ChiP-IT High Sensitivity kit (Active Motif) and analyzed using the ChiP-IT qPCR Analysis 
Kit (Active Motif) with primers to amplify -1970 to -1790 of the MMP-1 promoter. Binding units per 1000 cells were 
normalized to levels of binding of RNA polymerase II to the GAPDH promoter (from Borghaei et a/2016). 

The same Figure shows binding ofNF-kB on the same MMP-1 promoter site in 

the negative control cell line treated with TNFa. Even more interesting, binding of both 

ZBP-89 and NF-kB decrease in the ZBP-89 knockdown cell line. It is this experiment 

that initiated our interest in the interaction between ZBP-89 and NF-kB on MMP-1 

promoter. It is important to note that MG63 cells lack a functioning p53 gene due to a 

mutation between the first and second exon (Masuda et. al., 1987; Roepke et. al. 2007). 

Tumor suppressor, p53 is known to interact with both ZBP-89 and NF-kB, and can play 
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an important role in gene regulation (refer to section 1.7). 

1. 9 Research goal and hypothesis 

MMPs are a promising target for therapeutics in many pathologies. Clinical trials 

of synthetic MMP inhibitors and small-biological molecule inhibitors have failed much 

due to lack of specificity and side-effects. Furthering our knowledge of how MMP-1 

gene expression is regulated can provide novel insight into a different therapeutic 

approach. This research aims to investigate the roles of ZBP-89 and NF-kB in basal and 

cytokine induced MMP-1 gene expression. We hypothesize that ZBP-89 has a direct 

role in MMP-1 gene expression by binding to the site at -1969 bp of the promoter, in 

cooperation with NF-kB, and together these transcription factors increase cytokine

induced transcription. 
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2. Methods and Materials 

2.1 Cell cultures and treatment 

The monkey (Cercopithecus aethiops) fibroblast-like kidney cell line, COS!, was 

obtained from the American Type Culture Collection (ATCC CRL-1650). All cells were 

maintained in ATCC-formulated Dulbecco's Modified Eagle's Medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS) and 1% Antibiotic/Antimicotic 

(Gibco). Cells were incubated at 37°C in 5% C02 . The passage number for the COS! 

cells was 10-12. 

Human lung carcinoma cell line, A549 was obtained from ATCC (CCL-185). 

A549-ZBP-KD3 cells were derived by stable transfection of small hairpin RNA (shRNA) 

ZBP-89/ZNF148; and A549-NC cells were derived by stable transfections of a scrambled 

shRNA negative control (SABioscinces). The two cell lines were maintained in parallel 

in ATCC-formulated F-12K Medium, which is supplemented with 10% fetal bovine 

serum (FBS) and 1% Antibiotic/Antimicotic (Gibco). The cells were incubated at 37°C in 

5%C02. 

2.2 Plasmids 

pGL3-MMP1 (referred to as "longMMP-1") contains 2.2kb of the human MMPI 

promoter within the pGL3 luciferase reporter plasmid. This MMPI promoter includes 

the putative ZBP-89 binding site at -1969, but lacks the NF-kB site at -2878. The 

reporter plasmid includes the luc+ gene, encoding firefly luciferase; and Amp', the gene 

providing ampicillin resistance in E. coli. The pGL3-MMPI was obtained from Dr. 
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Maryam Rohani, Cedars Sinai Medical Center (J. Investigative Dermatology 2014, 134 

(5) 1230- 1237). 

pLightswitch-MMPl (referred to as "shortMMP-1) contains 1.12kb of the human 

MMPI promoter within the lightswitch reporter plasmid. The shorter MMPI promoter 

lacks the putative ZBP-89 binding site but maintains proximal AP-I and Ets sites. The 

reporter plasmid includes RenSP, an optimized Renilla luciferase gene and the Amp' gene 

providing ampicillin resistance in E. coli. The pLightswitch-MMPl was purchased from 

Switchgear Genomics. 

resistance" 
MMP·I 

pGI-l-MMPI 
l.ong ,\IMP· I Plmmid 

Figure 9: Schematic of Long and Short MMP-1 Plasmids 

pLipt.wlt<b-'L\IP I 
Short.\1.\IP·l Plmmirl 

MMP-1 

The ZBP-89 expression plasmid contains the ZBP-89 coding sequence with anN-

terminal Myc-DDK tag under the control of the cytomegalovirus promoter (pCMV6-XL4 

vector), as well as Kan', a gene providing Kanamycin resistance in E. coli. This plasmid 

was purchased from OriGene. 

pCMV-~gal contains a cytomegalovirus promoter driving expression of the GLBJ 

gene, coding for ~-galactosidase, and the Amp' gene providing ampicillin resistance in E. 
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coli. The pCMV- ~gal was purchased from Clontech. The pCMV- ~gal is co-transfected 

with pGL3-MMPl as a normalizing control for transfection efficiency. 

pLightswitch GAPDH contains the glyceraldehyde 3-phosphate dehydrogenase 

promoter within the lightswitch reporter plasmid. The reporter plasmid includes RenSP, 

an optimized Renilla luciferase gene, and the Amp' gene providing ampicillin resistance 

in E. coli. The pLightswitch GAPDH is transfected in parallel with pLightswitch-MMPl 

as a positive control. The pLightswitch GAPDH was purchased from Switchgear 

Genomics. 

pBlueScript II is an empty cloning vector containing only Amp'. It is used instead 

of the ZBP-89 and/or p65 expressionplasmids to maintain consistency of DNA quantities 

in experiments comparing MMPl expression with and without ZBP-89. The pBiueScript 

plasmid was purchased from Agilent Technologies. 

pCMV-NFkB-p65 contains a cytomegalovirus promoter driving expression of 

RELA gene, coding for nuclear factor-kappa-B p65 subunit, and the npt/1 gene providing 

kanamycin resistance. The pCMV-NFkB-p65 was purchased from OriGene. 

2.3 Transformation and Plasmid Isolation 

The transformation was conducted within chemically competent D5H-a E. coli 

cells (Invitrogen) which are stored in -80°C. Cells and plasmid DNA are thawed on ice 

prior to starting transformation. 50 fll of D5H-a E. coli cells are incubated with 5-20 flg 

of desired plasmid DNA (roughly 2 f!l) on ice for 30 minutes, followed by heat shock in a 

42°C water bath for 45 seconds. The transformed cells are incubated in 500 fll Lysogeny 
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broth (LB medium- lOg Bactotryptone, 5g bacto-yeast extract, lOg NaCl per liter of 

media) with the appropriate antibiotic for the plasmid being transformed (lOOug/ml of 

antibiotic) in a 37°C shaker for lhour. 75J1l of the transformed cells are plated on agar 

plates. Agar plates are prepared with antibiotic containing media, (1 Og bactotryptone, 5g 

bacto-yeast extract, lOg NaCI, and 15g agar per lL). The plates are incubated overnight 

in an incubator at 3 7°C. 

A single colony was selected to inoculate an overnight culture, from which the 

plasmid is isolated using the ZymoPURE Plasmid Maxiprep Kit (ZymoReaserch) with 

slight modification of the manufacturer's suggested protocol. 50ml of cultured cells is 

centrifuged for ten minutes at 3,400xg. The supernatant is discarded and the pellet is 

resuspended in 1 Oml of Buffer P 1. 10m! of Buffer P2 is added to the solution and 

incubated for 2-3minutes at room temperature. lOml of Buffer P3 is added to the solution 

and mixed by pipetting up and down. This solution is poured into a capped syringe and 

incubated at room temperature for 1 Ominutes. The solution is pushed through the filter 

into a new 50ml conical tube. 1 Oml of binding buffer is added and the solution is mixed 

by inverting 10 times. Using the provided V-P column, the entire solution is vacuumed 

through the filter. 5ml of wash 1 is added and vacuumed. 5ml of wash2 is added and 

vacuumed. This step is repeated once more. The final spin column is centrifuged for 1 

minute to let any excess buffers pass through. 60J1l of Elution buffer is added directly to 

the column matrix and incubated for Sminutes at room temperature. The collecting tube 

is centrifuged at 10,000 rpm for 1 minute to collect the plasmid DNA in solution. The 

integrity of the isolated plasmid DNA is confirmed by agarose gel electrophoresis and 

concentration is determined by measurement in a spectrophotometer (NanoDrop 2000). 
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The ratio of absorbance at 260nm/280nm is used as an indication of purity, and plasmids 

with ratios near 2.0 are suitable for transfection. 

2.4 Transfection 

Approximately, 5 x 104 COS cells/well are plated in a 6 well plate and transfected 

24 hours later, when the cells have reached 70-90% confluence. The ZBP-89 or 

pBiueScript is transfected along with pCMV-pgal and pGL3-MMP1 plasmids, using 

Lipofectamine 2000 DNA as the transcfection reagent (Invitrogen). 101-11 of 

Lipofectamine reagent is diluted in 5001-11 of Opti-MEM Medium (Invitrogen). 4!-lg of 

total plasmid DNA (1.3 1-1g of each plasmid) is diluted in 500!-ll of Opti-MEM Medium. 

The diluted DNA is added to the diluted Lipofectamine (1: 1 ratio), and this mixture is left 

at room temperature for 20 minutes. The Opti-MEM-Lipofectamine-DNA mixture is 

added to each well of cells and incubated at 37°C for 5 hours, then 2ml of DMEM growth 

media is added to each well. The 6 well plate is then incubated at 3 7°C for 48 hours. 

The transfected cells are analyzed using the Luciferase Assay with reporter lysis buffer 

(Promega) and the p galactosidase Assay (Cionetech) according to the manufacturers' 

suggested protocols. The results are read using a TD-20/20 Luminometer. 

For transfection of pLightswitch GAPDH and pLightswitch-MMPl plasmids, 

approximately 2 xl04 cells (either COS-I or A549 cells) are plated per well in a 96 well 

plate. Twenty-four hours later, when the cells have reached 70-90% confluence, 

plasmids are transfected using the FuGene HD Transfection reagent (Promega). 2!-lg of 

total plasmid DNA (11-1g of each plasmid) is added to 301-11 of DMEM. 4!-ll of FuGene is 
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added to this solution and incubated at room temperature for 30 minutes. 5 J.ll of the 

solution is added to each well of a 96-well plate, which is then incubated at 3TC for 

48hours. The transfected cells are analyzed using the LightSwitch Luciferase Assay Kit 

(Active Motif) according to the manufacturer's suggested protocol. Results are read 

using a BioTek synergy2 microplate luminometer and GenS software. 

Transfection of pGL3-MMP1 plasmids in A549 cells is accomplished with a 

slightly modified protocol using FuGene reagent in 6 well- plates. 4 J.lg of total plasmid 

DNA is added to 150J.!l of A549 specific- F 12K media. lOJ.!I ofFuGene is added to this 

solution and incubated at room temperature for 30 minutes. 150J.!l of the solution is 

added to each well, incubated at 3 7°C for 48hours. After 24 hours 1 Ong/ml of cytokine 

IL-1 is added in specified experiment wells. The transfected cells are analyzed using the 

Luciferase Assay with reporter lysis buffer (Promega) and the p galactosidase Assay 

(Clonetech) according to the manufacturers' suggested protocols. The results are read 

using a TD-20/20 Luminometer. 

2.5 Statistical Analysis: 

Data is expressed as the mean of three or more experiments ± standard error of the 

mean (SEM). Statistical analysis was determined using Hest for paired data, and one 

way ANOV A with post-hoc Bonferroni for analysis of multiple groups. A probability of 

less than 0.05 was considered statistically significant. 

Page 37 of 58 



www.manaraa.com

N. Khaselev 

3. Results 

3. 1 Effect ofZBP-89 transcription factor on short and long MMP-1 expression in COS-1 

cells 

MMP-1 Expression in COS-1 Cells 
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Figure 10: Short and Long MMP-1 expression in COS·1 cells with ZBP·89 and without (basal). COS-1 
cells were transiently transfected with luciferase reporter plasmids containing 2 kb (Long) and 1.1 kb 
(Short) fragments of the human MMP-1 promoter, in the presence and absence of a ZBP-89 
expression vector. Results are from 3 independent experiments performed in triplicate, expressed 
as fold increase over no ZBP-89 controls. Results are statistically different as determined by !-test. 
• p<O.OS. (from Borghaei eta/., 2016) 

The long MMP-1 plasmid (pGL3-MMP1) and short MMP-1 plasmid 

(pLightswitch-MMP1) were transfected in COS-1 cells, either with or without the ZBP-

89 expression vector. As Figure 10 indicates, addition of ZBP-89 increased expression 

from the longer version of the MMP-1 promoter by approximately 4 fold (p<0.05). 

Addition of ZBP-89 had no effect on expression from the shorter version of the MMP-1 

Page 38 of 58 



www.manaraa.com

N. Khaselev 

promoter. 

3.2 Combined effect ofZBP-89 and NF-kB on long MMP-1 expression in COS-1 

Transcription Factor effect on short and long 
MMP-1 expression in COS-1 cells 

0.0 

Control ZBP-89 p65 ZBP-89 + p65 

Figure 11: Transfection study demonstrating the effects of increasing amounts of ZBP-89, p65, and both 
transcription factors together on transcription from the MMP-1 promoter. COS-1 cells were transiently 
transfected with luciferase reporter plasmids containing 2 kb (Long) and 1.1 kb (Short) fragments of the 
human MMP-1 promoter, in the presence and absence of a ZBP-89 and/ or a p65 expression vector. 
Results are from at least 3 independent experiments performed in triplicate, expressed as fold increase 
over basal controls. Symbols indicate statistical significance determined by one-way AN OVA with post
hoc Bonferroni. 

Figure 11 shows the cumulative data for experiments using short and long MMP-

1 plasmids in COS-1 cells. The data shows the change of MMP-1 expression with 

increasing amounts of ZBP-89, increasing amounts of NF-kB (p65), and combined 
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effects of increasing amount of ZBP-89 and NF-kB (p65). As the graph shows, long 

MMP-1 plasmid expression increased with increasing amounts of transcription factor. On 

the other hand, the addition of transcription factors had no effect on short MMP-1 

plasmid expression. Moreover, ZBP-89 and NF-kB seem to have a synergistic effect on 

expression from the long MMP-1 promoter. The highest dose of the combined 

transcription factors increased expression more than either transcription factor alone 

(p<O.OS). 

3.3 Combined effect ofZBP-89 and NF-kB on short MMP-1 expression in A549 NC and 
A549KD 
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Figure 12: Transfection study to demonstrate the effect of ZBP-89 andfor p65 over-expression on 
transcription from the short MMP-1 promoter. Results are from at least 3 independent experiments 
performed in triplicate, expressed as fold increase over basal controls. No statistical difference was 
found within or between cell lines. 
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Figure 12 depicts the effects of transcription factor ZBP-89 and NF-kB on short 

MMP-1 plasmid in both negative control A549 cells and the ZBP-89 knock down cell 

line. The graph shows the relative change in MMP-1 expression with the addition of 

ZBP or NF-kB as compared to control (overexpressed MMP-1 expression without the 

addition of transcription fuctor). MMP-1 expression did not significantly change in either 

A549 cell line with the addition of transcription factor. This experiment was repeated 

once with A549-NC and twice with A549 KD with the addition of IL-l cytokine and no 

effect was seen (data not shown). 

3.4 Cytokine induced MMP-1 expression in human lung carcinoma A549 negative 
control and ZBP-knock down cell lines. 

Basal vs Cytokine induced long MMP-1 
expression in A549 NC and KD cells 

6 ,---------------------------------------------

n=3 .A549NC 

.A549KD 

Basal Expression IL-l Treated 
-----------

Figure 13: Effect of ZBP-89 knock-down on basal and IL-1 induced expression from the long MMP-1 
promoter. A549 cells (NC or KD) were transiently transfected with luciferase reporter plasmids 
containing 2 kb (Long) fragments of the human MMP-1 promoter. with and without IL-l (lOngfml) 
treatment. Results are represented in arbitrary units of relative luciferase activity. 
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Figure 13 shows the results of basal and IL-l induced expression of long MMP-1 

plasmid in A549 negative control and ZBP-knock-down cell lines. The data was not 

statistically significant, however a trend indicated that long MMP-1 basal expression is 

higher in the knock-down cell line than in the negative control. This suggests ZBP-89 

represses MMP-1 expression under basal conditions. Cytokine IL-l induced expression 

of long MMP-1 is slightly increased in the negative control cell lines, but repressed in the 

ZBP-knock down cells. This suggests that ZBP-89 acts as an activator under cytokine 

conditions. 
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4. Discussion 

The matrix metalloproteinase (MMP) family digests the macromolecules of the 

extracellular matrix, and thereby helps to regulate important biological processes such as 

the cell cycle, apoptosis, and tissue repair. However, the unregulated catabolism of 

collagen by MMP-1 can yield negative symptoms in a number of diseases. It can cause 

tooth loss in patients with periodontitis, joint damage in patients with arthritis, and 

metastasis in patients with cancer, which is often fatal. Considering the widespread and 

devastating effects of cancer and chronic inflammatory disease, researchers have 

identified MMP inhibitors as a potential therapeutic target. To date, most of the clinical 

trial results have been disappointing, with only one MMP inhibitor currently on the 

market. Understanding the mechanisms involved in balanced expression of MMPs might 

provide critical information for drug design. This study's findings can help guide the 

development ofMMP inhibitors that can be used to treat pervasive and painful diseases. 

To better understand MMP expression, we asked the following questions: does 

ZBP-89 affect MMP-1 expression, and if so, in what capacity? MMP-1 gene expression 

is regulated by cytokines and strong transcription factors such as AP-1, ETS, and NF-kB. 

Preliminary data shows that cytokine-induced expression of MMP-1 is decreased by gene 

knock-down of ZBP-89 in MG-63 osteosarcoma cells (Figure 7). This is the first 

evidence that suggests ZBP-89 may have a role (direct or indirect) in regulating MMP-1 

gene expression. The results of ChiP assays demonstrated that ZBP-89, together with NF

kB, can bind to the endogenous MMP-1 promoter following stimulation with TNFu 
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(Figure 8). This suggests that MMP-1, together with NF-kB, has a direct role in gene 

regulation. This was further supported by a co-immunoprecipitation experiment that 

showed p65 and ZBP-89 can physically interact, or can at least be parts of a larger 

protein complex (Borghaei, et al. 2016). In MG-63 osteosarcoma cells, it appears that 

ZBP-89 and NF-kB are most likely working together to increase transcription of both 

MMP-1 and MMP-3 in response to inflammatory cytokines. This indicates that ZBP-89 

has a larger role in the regulation of MMPs than was previously known (Borghaei et al. 

2016). However, ZBP-89 and especially NF-kB are known to be affected by cellular 

context, and MG-63 cells are deficient in p53 (Mills et al. 2009), which is known to 

interact with both factors (Jeong et al. 2004; Bai et al., 2001). To account for this 

limitation, new ZBP-89 knock-down and negative control cell lines were established 

using A549 lung adenocarcinoma cells (Gorski, unpublished data). 

The goal of this research study was to investigate two questions: I) does ZBP-89 

play a direct role in MMP-1 gene regulation; 2) what is the relationship between ZBP-89 

and NF-kB in regulation of MMP-1 expression under basal and cytokine induced 

conditions. Our hypothesis was that ZBP-89 has a direct role in MMP-1 gene expression 

by binding to the upstream site at -1969bp of the promoter, in cooperation with NF -kB, 

and that together these transcription factors increase cytokine-mediated transcription. 

Two different luciferase reporter constructs were used in transfection studies. 

Each contained different fragments of the MMP-1 promoter - the "long" construct 

contains 2.2kb of the human MMP-1 5' flanking sequence, including the putative ZBP-

89/NF-kB site at -1976, while the "short" construct contains a 1.12kb fragment that lacks 

the putative ZBP-89/NF-kB site but retains the proximal AP-1 and ETS sites. The fact 
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that overexpression of ZBP-89 was able to increase transcription from the long plasmid, 

but had no effect on the shorter version (Figure 1 0) is consistent with a direct and positive 

role for ZBP-89 in regulation of MMP-1 expression through the putative site, rather than 

an indirect effect mediated through the AP-1/ETS sites. However, since the two reporter 

constructs differ by 1kb, these data do not definitively show that ZBP-89 is necessarily 

working directly through the putative site. Site-directed mutagenesis of the putative site 

in the context of the larger construct would allow a more definitive conclusion to be 

drawn regarding the putative binding site. Unfortunately, our attempts to effectively 

mutate the binding site were unsuccessful. 

Over-expression of NF -kB p65 also modestly increased expressiOn from the 

longer, but not the shorter MMP-1 reporter plasmid, suggesting that it too might have a 

direct role through the putative site. Most importantly, the two transcription factors 

showed a synergistically positive effect on the longer promoter construct when over

expressed together. These results suggest that the relationship between ZBP-89 and NF

kB as related to regulation of MMP-1 expression is cooperative rather than competitive. 

This confirms our prediction that the two transcription factors on MMP-1 

expression would have a positive additive or synergistic effect. These results differ 

somewhat from similar experiments performed with the MMP-3 promoter, in which 

ZBP-89 seemed to activate while NF-kB inhibited transcription (Borghaei, 2009). Thus, 

although ZBP-89 and NF-kB have been shown to bind together and affect transcription 

from two different MMP promoters, their effects on the two genes are not identical. 

COS-1 cells are an easily transfected and commonly used immortalized 

fibroblast-like cell line derived from monkey renal epithelial cells. They do not, however, 
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exhibit increased expression of MMPs in response to cytokines, which make them a 

suboptimal candidate for studies of inflammatory responses. To address this limitation, 

we attempted to transfect the ZBP-89 knock-down and negative control cell lines derived 

from MG-63 osteosarcoma cells, used in preliminary experiments as described in the 

introduction. These attempts failed to generate sufficient transfection efficiency to 

provide interpretable data. Therefore, we derived another pair of knock -down and 

negative control cell lines from A549 human lung adenocarinocma cells to repeat this 

experiment as well as compare the effects of ZBP-89 knock-down on MMP expression in 

a different cellular context (Gorski, unpublished). 

The A549 negative control (NC) and ZBP-knock down (KD) cells were 

successfully transfected with the shorter version of the MMP-1 promoter, but addition of 

ZBP-89 and/or NF-kB p65 had no effect on expression from that promoter fragment 

(Figure 12). This is consistent with both our results in COS cells and our hypothesis that 

ZBP-89 and NF-kB act through an upstream binding site missing in the truncated MMP-1 

plasmid. Transfection studies using the longer MMP-1 promoter proved to be technically 

more challenging due to difficulties in detecting and measuring renilla luciferase 

production using the system currently available. This resulted in more variability than 

expected. However, although the results are not statistically significant, the trends 

suggest that ZBP-89 knockdown might increase basal expression of MMP-1 in A549 

cells, and decrease induced expression in the presence of IL-l (Figure 13 ). If these 

results can be replicated in a more reliable system, they would establish that ZBP-89 acts 

as a repressor under basal conditions, which appears to contradict our findings in the 
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COS-1 cells, m which overexpresston increased expression from the long MMP-1 

promoter. 

The presence of a transcriptional repressor to limit MMP-1 expression under basal 

conditions is physiologically plausible. The function of MMP-1 is to catabolize the 

extracellular matrix, which is vital for wound healing or tissue remodeling. Yet, under 

most normal conditions, the body needs less MMP-1 to preserve the extracellular matrix. 

Under basal conditions, MMP-1 expression is expected to be repressed, and our 

experimental findings in the A549 cells suggest that ZBP-89 contributes to this down 

regulation. The negative control cell line, which has functional ZBP-89, shows less 

MMP-1 basal expression. When ZBP-89 is removed by gene knock-down, long MMP-1 

expression increases. 

Why does ZBP-89 seem to activate MMP-1 expression in COS cells, but repress 

it in A549 cells? One key difference between these two experiments is the source of 

ZBP-89. Exogenous ZBP-89 was added at supra-physiologic levels to induce expression 

in the COS-1 cells, whereas, in the negative control A549 cells, ZBP-89 is expressed at 

low normal levels from the endogenous gene. Another difference is the cellular 

environment, potentially including different basal levels of NF-kB and/or coactivators, 

which could influence the effects of ZBP-89. For example, ZBP-89 binds to a site in the 

MMP-3 promoter that functions as a repressor element in some cells but not in others 

(Borghaei et al. 1999; Y e et al. 1996; Borghaei et a/. 2009), and the role of that 

polymorphic binding site in determining levels of MMP-3 protein in vivo is different in 

tissue compared to serum (Holiday et al. 2007; Samnegard et al., 2005). 
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Although the exact roles of ZBP-89 and NF-kB in regulation of MMP-1 

expression under inflammatory conditions could not be determined, these results do 

support a direct role for ZBP-89, in cooperation with NF-kB, in regulation of MMP-1 

gene expression. To our knowledge, this is the first report of a role for ZBP-89 in 

regulating this important gene. Taken together with existing data demonstrating 

complicated and cell-specific effects of these two transcription factors in regulating 

expression ofMMP-3 (Borghaei et al. 1999, 2009; Bond et al. 2001), a more general role 

for ZBP-89 in regulating remodeling of the extracellular matrix under normal and 

pathological conditions is suggested. Additionally, the synergistic effects we observed 

between ZBP-89 and NF-kB suggests the possibility of a broader role for this lesser 

known transcription factor in modulating gene expression during inflammation. 

5. Conclusion 

ZBP-89 is an important zinc finger transcription factor involved in regulating 

genes that influence cell growth, apoptosis, and other important biological processes. 

NF-kB is a protein complex that regulates gene transcription and is a key influencer of 

the human immune system. This research shows that these two important transcription 

factors can cooperatively increase expression of MMP-1. MMP-1 is one of many 

proteinases that help build and rebuild tissue and the extra-cellular matrix. MMP-1 also 

plays a key role in cancer metastasis and inflammatory disease. Elucidating the roles of 

regulators of MMP-1 gene expression, such as ZBP-89 and NF-kB, in mediating 

balanced expression under various conditions will aid in the development of therapies for 

various pathologies. 
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